return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for CF (Fluoromethylidyne)

using model chemistry: CCSD/6-311G*

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C*V 2Π
Energy calculated at CCSD/6-311G*
 hartrees
Energy at 0K-137.515474
Energy at 298.15K-137.514091
HF Energy-137.207369
Nuclear repulsion energy22.409037
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCSD/6-311G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 1337 1275        

Unscaled Zero Point Vibrational Energy (zpe) 668.6 cm-1
Scaled (by 0.9535) Zero Point Vibrational Energy (zpe) 637.5 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCSD/6-311G*
B
1.40901

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCSD/6-311G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -0.765
F2 0.000 0.000 0.510

Atom - Atom Distances (Å)
  C1 F2
C11.2754
F21.2754

picture of Fluoromethylidyne state 1 conformation 1
More geometry information
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at CCSD/6-311G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
22        


Electric dipole moments


Electric Quadrupole moment
Quadrupole components in D Å


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 0.000 0.000 0.000


<r2> (average value of r2) Å2
<r2> 12.670
(<r2>)1/2 3.559