return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for LiBH4 (Lithium borohydride)

using model chemistry: mPW1PW91/aug-cc-pVTZ

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C3V 1A1
Energy calculated at mPW1PW91/aug-cc-pVTZ
 hartrees
Energy at 0K-34.786724
Energy at 298.15K-34.790828
HF Energy-34.786724
Nuclear repulsion energy17.433599
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at mPW1PW91/aug-cc-pVTZ
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A1 2617 2507 121.77      
2 A1 2265 2170 145.64      
3 A1 1226 1174 92.72      
4 A1 697 668 158.81      
5 E 2246 2152 314.00      
5 E 2246 2152 313.97      
6 E 1277 1223 1.66      
6 E 1277 1223 1.65      
7 E 1106 1059 27.50      
7 E 1106 1059 27.49      
8 E 498 477 4.84      
8 E 498 477 4.86      

Unscaled Zero Point Vibrational Energy (zpe) 8528.7 cm-1
Scaled (by 0.9581) Zero Point Vibrational Energy (zpe) 8171.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at mPW1PW91/aug-cc-pVTZ
ABC
4.25404 0.78912 0.78912

See section I.F.4 to change rotational constant units
Geometric Data calculated at mPW1PW91/aug-cc-pVTZ

Point Group is C3v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 -1.415
B2 0.000 0.000 0.501
H3 0.000 0.000 1.695
H4 0.000 1.145 0.014
H5 0.991 -0.572 0.014
H6 -0.991 -0.572 0.014

Atom - Atom Distances (Å)
  Li1 B2 H3 H4 H5 H6
Li11.91583.10931.83101.83101.8310
B21.91581.19351.24411.24411.2441
H33.10931.19352.03332.03332.0333
H41.83101.24412.03331.98291.9829
H51.83101.24412.03331.98291.9829
H61.83101.24412.03331.98291.9829

picture of Lithium borohydride state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 B2 H3 180.000 Li1 B2 H4 66.962
Li1 B2 H5 66.962 Li1 B2 H6 66.962
Li1 H4 B2 74.338 Li1 H5 B2 74.338
Li1 H6 B2 74.338 H3 B2 H4 113.038
H3 B2 H5 113.038 H3 B2 H6 113.038
H4 B2 H5 105.681 H4 B2 H6 105.681
H5 B2 H6 105.681
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at mPW1PW91/aug-cc-pVTZ Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.024      
2 B 1.108      
3 H -0.174      
4 H -0.319      
5 H -0.319      
6 H -0.319      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 -5.954 5.954
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -14.022 0.000 0.000
y 0.000 -14.022 0.000
z 0.000 0.000 -4.692
Traceless
 xyz
x -4.665 0.000 0.000
y 0.000 -4.665 0.000
z 0.000 0.000 9.330
Polar
3z2-r218.659
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.428 0.000 0.000
y 0.000 4.428 0.000
z 0.000 0.000 4.801


<r2> (average value of r2) Å2
<r2> 20.880
(<r2>)1/2 4.569