return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for C3H4O2 (propanedial)

using model chemistry: LSDA/6-31G**

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C1 1A
Energy calculated at LSDA/6-31G**
 hartrees
Energy at 0K-265.736909
Energy at 298.15K-265.741081
Nuclear repulsion energy157.202113
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at LSDA/6-31G**
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A 3078 3020 2.68      
2 A 2977 2921 6.48      
3 A 2855 2802 41.16      
4 A 2837 2784 108.90      
5 A 1842 1808 113.90      
6 A 1794 1761 233.67      
7 A 1366 1341 21.70      
8 A 1355 1330 9.58      
9 A 1336 1311 4.25      
10 A 1234 1211 62.46      
11 A 1131 1110 24.17      
12 A 1058 1038 21.85      
13 A 1039 1020 65.57      
14 A 939 922 15.72      
15 A 819 804 35.56      
16 A 748 734 11.64      
17 A 564 553 11.26      
18 A 460 451 10.82      
19 A 223 219 5.81      
20 A 143 141 16.41      
21 A 91 89 7.39      

Unscaled Zero Point Vibrational Energy (zpe) 13944.7 cm-1
Scaled (by 0.9813) Zero Point Vibrational Energy (zpe) 13683.9 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at LSDA/6-31G**
ABC
0.55513 0.09877 0.08786

See section I.F.4 to change rotational constant units
Geometric Data calculated at LSDA/6-31G**

Point Group is C1

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.019 0.780 0.238
C2 -1.339 0.366 -0.231
C3 1.005 -0.350 0.070
O4 -1.815 -0.710 0.064
O5 2.176 -0.184 -0.173
H6 -0.057 0.948 1.332
H7 0.401 1.705 -0.221
H8 -1.883 1.087 -0.897
H9 0.539 -1.365 0.193

Atom - Atom Distances (Å)
  C1 C2 C3 O4 O5 H6 H7 H8 H9
C11.49551.50902.36952.39701.10941.10152.23712.2068
C21.49552.46941.21303.55752.10412.19561.12282.5888
C31.50902.46942.84301.20692.09932.16253.36831.1228
O42.36951.21302.84304.03202.72963.29012.03922.4470
O52.39703.55751.20694.03202.92062.59244.31422.0508
H61.10942.10412.09932.72962.92061.78742.88572.6461
H71.10152.19562.16253.29012.59241.78742.46103.1009
H82.23711.12283.36832.03924.31422.88572.46103.6152
H92.20682.58881.12282.44702.05082.64613.10093.6152

picture of propanedial state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 C2 O4 121.712 C1 C2 H8 116.677
C1 C3 O5 123.534 C1 C3 H9 113.154
C2 C1 C3 110.554 C2 C1 H6 106.816
C2 C1 H7 114.587 C3 C1 H6 105.577
C3 C1 H7 110.902 O4 C2 H8 121.584
O5 C3 H9 123.312 H6 C1 H7 107.886
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at LSDA/6-31G** Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.398      
2 C 0.197      
3 C 0.224      
4 O -0.334      
5 O -0.328      
6 H 0.220      
7 H 0.175      
8 H 0.115      
9 H 0.129      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -0.942 2.017 0.360 2.255
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -37.786 -2.941 1.507
y -2.941 -27.584 0.115
z 1.507 0.115 -26.767
Traceless
 xyz
x -10.611 -2.941 1.507
y -2.941 4.693 0.115
z 1.507 0.115 5.918
Polar
3z2-r211.836
x2-y2-10.203
xy-2.941
xz1.507
yz0.115


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 7.451 -0.006 0.108
y -0.006 5.582 -0.441
z 0.108 -0.441 3.811


<r2> (average value of r2) Å2
<r2> 0.000
(<r2>)1/2 0.000