return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for NH2SH (Thiohydroxylamine)

using model chemistry: PBEPBE/6-311+G(3df,2p)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes CS trans 1A'
1 2 no CS cis 1A'

Conformer 1 (CS trans)

Jump to S1C2
Energy calculated at PBEPBE/6-311+G(3df,2p)
 hartrees
Energy at 0K-454.527151
Energy at 298.15K-454.530862
HF Energy-454.527151
Nuclear repulsion energy57.419954
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at PBEPBE/6-311+G(3df,2p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 3430 3402 4.44      
2 A' 2564 2543 11.77      
3 A' 1571 1559 12.77      
4 A' 1009 1000 6.17      
5 A' 860 853 34.68      
6 A' 608 603 74.83      
7 A" 3518 3489 23.21      
8 A" 1092 1083 1.15      
9 A" 435 431 42.45      

Unscaled Zero Point Vibrational Energy (zpe) 7543.2 cm-1
Scaled (by 0.9918) Zero Point Vibrational Energy (zpe) 7481.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at PBEPBE/6-311+G(3df,2p)
ABC
4.81574 0.46932 0.45999

See section I.F.4 to change rotational constant units
Geometric Data calculated at PBEPBE/6-311+G(3df,2p)

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
N1 0.014 1.112 0.000
S2 0.014 -0.619 0.000
H3 -1.333 -0.786 0.000
H4 0.501 1.453 0.829
H5 0.501 1.453 -0.829

Atom - Atom Distances (Å)
  N1 S2 H3 H4 H5
N11.73072.32751.02001.0200
S21.73071.35802.28362.2836
H32.32751.35803.01033.0103
H41.02002.28363.01031.6585
H51.02002.28363.01031.6585

picture of Thiohydroxylamine state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
N1 S2 H3 97.059 S2 N1 H4 109.514
S2 N1 H5 109.514 H4 N1 H5 108.788
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at PBEPBE/6-311+G(3df,2p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 N -0.367      
2 S -0.144      
3 H 0.140      
4 H 0.186      
5 H 0.186      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.537 0.985 0.000 1.122
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.565 3.446 0.000
y 3.446 -19.367 0.000
z 0.000 0.000 -20.626
Traceless
 xyz
x 0.432 3.446 0.000
y 3.446 0.728 0.000
z 0.000 0.000 -1.160
Polar
3z2-r2-2.320
x2-y2-0.197
xy3.446
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.507 0.242 0.000
y 0.242 5.759 0.000
z 0.000 0.000 4.446


<r2> (average value of r2) Å2
<r2> 35.678
(<r2>)1/2 5.973

Conformer 2 (CS cis)

Jump to S1C1
Energy calculated at PBEPBE/6-311+G(3df,2p)
 hartrees
Energy at 0K-454.526770
Energy at 298.15K-454.530526
HF Energy-454.526770
Nuclear repulsion energy57.689842
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at PBEPBE/6-311+G(3df,2p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 3431 3403 1.08      
2 A' 2479 2459 40.08      
3 A' 1558 1545 13.14      
4 A' 975 967 19.16      
5 A' 860 853 19.78      
6 A' 579 574 119.17      
7 A" 3529 3500 22.71      
8 A" 1073 1064 1.85      
9 A" 524 520 2.12      

Unscaled Zero Point Vibrational Energy (zpe) 7503.4 cm-1
Scaled (by 0.9918) Zero Point Vibrational Energy (zpe) 7441.8 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at PBEPBE/6-311+G(3df,2p)
ABC
4.85930 0.47427 0.46579

See section I.F.4 to change rotational constant units
Geometric Data calculated at PBEPBE/6-311+G(3df,2p)

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
N1 0.084 1.100 0.000
S2 0.084 -0.610 0.000
H3 -1.248 -0.922 0.000
H4 -0.343 1.494 0.837
H5 -0.343 1.494 -0.837

Atom - Atom Distances (Å)
  N1 S2 H3 H4 H5
N11.71052.42181.01891.0189
S21.71051.36862.30502.3050
H32.42181.36862.71282.7128
H41.01892.30502.71281.6734
H51.01892.30502.71281.6734

picture of Thiohydroxylamine state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
N1 S2 H3 103.166 S2 N1 H4 112.770
S2 N1 H5 112.770 H4 N1 H5 110.394
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at PBEPBE/6-311+G(3df,2p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 N -0.340      
2 S -0.129      
3 H 0.111      
4 H 0.179      
5 H 0.179      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -1.870 1.121 0.000 2.180
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -20.435 -1.195 0.000
y -1.195 -18.615 0.000
z 0.000 0.000 -20.558
Traceless
 xyz
x -0.849 -1.195 0.000
y -1.195 1.881 0.000
z 0.000 0.000 -1.032
Polar
3z2-r2-2.065
x2-y2-1.820
xy-1.195
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.557 0.314 0.000
y 0.314 5.729 0.000
z 0.000 0.000 4.431


<r2> (average value of r2) Å2
<r2> 35.517
(<r2>)1/2 5.960