return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for SiH3OH (silanol)

using model chemistry: B2PLYP=FULLultrafine/6-31G*

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes CS 1A'
Energy calculated at B2PLYP=FULLultrafine/6-31G*
 hartrees
Energy at 0K-366.914052
Energy at 298.15K 
HF Energy-366.823690
Nuclear repulsion energy64.289761
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B2PLYP=FULLultrafine/6-31G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 3837 3640 70.29 86.60 0.29 0.45
2 A' 2329 2210 140.83 96.78 0.26 0.41
3 A' 2273 2157 125.75 149.07 0.08 0.16
4 A' 1046 992 241.03 16.85 0.70 0.83
5 A' 996 945 125.93 18.25 0.75 0.86
6 A' 929 882 78.80 12.81 0.75 0.86
7 A' 858 814 143.26 8.65 0.19 0.32
8 A' 703 667 73.29 6.38 0.68 0.81
9 A" 2268 2151 238.02 62.17 0.75 0.86
10 A" 965 916 98.73 22.29 0.75 0.86
11 A" 739 701 83.72 11.72 0.75 0.86
12 A" 227 215 122.58 2.57 0.75 0.86

Unscaled Zero Point Vibrational Energy (zpe) 8584.9 cm-1
Scaled (by 0.9487) Zero Point Vibrational Energy (zpe) 8144.5 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B2PLYP=FULLultrafine/6-31G*
ABC
2.57356 0.45387 0.44479

See section I.F.4 to change rotational constant units
Geometric Data calculated at B2PLYP=FULLultrafine/6-31G*

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Si1 0.031 -0.534 0.000
O2 0.031 1.132 0.000
H3 1.452 -0.938 0.000
H4 -0.646 -1.098 1.199
H5 -0.646 -1.098 -1.199
H6 -0.835 1.561 0.000

Atom - Atom Distances (Å)
  Si1 O2 H3 H4 H5 H6
Si11.66611.47741.48751.48752.2673
O21.66612.51072.62072.62070.9661
H31.47742.51072.42152.42153.3874
H41.48752.62072.42152.39742.9233
H51.48752.62072.42152.39742.9233
H62.26730.96613.38742.92332.9233

picture of silanol state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Si1 O2 H6 116.396 O2 Si1 H3 105.853
O2 Si1 H4 112.279 O2 Si1 H5 112.279
H3 Si1 H4 109.514 H3 Si1 H5 109.514
H4 Si1 H5 107.379
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B2PLYP=FULLultrafine/6-31G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Si 0.634      
2 O -0.739      
3 H -0.092      
4 H -0.115      
5 H -0.115      
6 H 0.428      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -1.514 -0.030 0.000 1.515
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.795 -3.132 0.005
y -3.132 -20.305 0.013
z 0.005 0.013 -21.788
Traceless
 xyz
x 1.251 -3.132 0.005
y -3.132 0.486 0.013
z 0.005 0.013 -1.738
Polar
3z2-r2-3.475
x2-y20.510
xy-3.132
xz0.005
yz0.013


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 3.579 -0.127 -0.000
y -0.127 3.545 -0.000
z -0.000 -0.000 3.338


<r2> (average value of r2) Å2
<r2> 39.393
(<r2>)1/2 6.276