return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for NaCN (Sodium Cyanide)

using model chemistry: B3LYP/6-31G*

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C*V 1Σ
1 2 yes CS 1A
1 3 no C*V 1Σ

Conformer 1 (C*V)

Jump to S1C2 S1C3
Energy calculated at B3LYP/6-31G*
 hartrees
Energy at 0K-255.139945
Energy at 298.15K-255.139330
HF Energy-255.139945
Nuclear repulsion energy46.672724
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-31G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2234 2146 3.14      
2 Σ 367 352 52.42      
3 Π 121 116 16.23      
3 Π 121 116 16.23      

Unscaled Zero Point Vibrational Energy (zpe) 1421.3 cm-1
Scaled (by 0.9603) Zero Point Vibrational Energy (zpe) 1364.9 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-31G*
B
0.15559

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-31G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -0.678
N2 0.000 0.000 -1.849
Na3 0.000 0.000 1.547

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.17142.2246
N21.17143.3959
Na32.22463.3959

picture of Sodium Cyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 0.000 C1 Na3 N2 0.000
N2 C1 Na3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-31G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.081      
2 N -0.459      
3 Na 0.540      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.153 10.153
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.152 0.000 0.000
y 0.000 -17.152 0.000
z 0.000 0.000 -13.017
Traceless
 xyz
x -2.067 0.000 0.000
y 0.000 -2.067 0.000
z 0.000 0.000 4.135
Polar
3z2-r28.269
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.841 0.000 0.000
y 0.000 2.841 0.000
z 0.000 0.000 5.956


<r2> (average value of r2) Å2
<r2> 62.862
(<r2>)1/2 7.929

Conformer 2 (CS)

Jump to S1C1 S1C3
Energy calculated at B3LYP/6-31G*
 hartrees
Energy at 0K-255.145628
Energy at 298.15K-255.145372
HF Energy-255.145628
Nuclear repulsion energy51.828232
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-31G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 387 371 52.95      
2 A' 178 171 5.42      
3 A' 2125 2041 28.41      

Unscaled Zero Point Vibrational Energy (zpe) 1344.8 cm-1
Scaled (by 0.9603) Zero Point Vibrational Energy (zpe) 1291.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-31G*
ABC
1.89980 0.28015 0.24415

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-31G*

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 1.114 0.670 0.000
N2 0.000 1.072 0.000
Na3 -0.608 -1.047 0.000

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.18402.4320
N21.18402.2044
Na32.43202.2044

picture of Sodium Cyanide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 86.192 C1 Na3 N2 29.063
N2 C1 Na3 64.745
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-31G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.031      
2 N -0.436      
3 Na 0.466      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -4.395 -7.048 0.000 8.306
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.374 3.611 0.000
y 3.611 -14.143 0.000
z 0.000 0.000 -17.479
Traceless
 xyz
x -3.562 3.611 0.000
y 3.611 4.284 0.000
z 0.000 0.000 -0.721
Polar
3z2-r2-1.442
x2-y2-5.231
xy3.611
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.023 -0.014 0.000
y -0.014 3.750 0.000
z 0.000 0.000 2.965


<r2> (average value of r2) Å2
<r2> 44.439
(<r2>)1/2 6.666

Conformer 3 (C*V)

Jump to S1C1 S1C2
Energy calculated at B3LYP/6-31G*
 hartrees
Energy at 0K-255.138698
Energy at 298.15K 
HF Energy-255.138698
Nuclear repulsion energy48.868551
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-31G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2156 2070 109.70      
2 Σ 418 402 56.97      
3 Π 76i 73i 7.14      
3 Π 76i 73i 7.14      

Unscaled Zero Point Vibrational Energy (zpe) 1211.4 cm-1
Scaled (by 0.9603) Zero Point Vibrational Energy (zpe) 1163.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-31G*
B
0.17877

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-31G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -1.848
N2 0.000 0.000 -0.666
Na3 0.000 0.000 1.432

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.18233.2802
N21.18232.0979
Na33.28022.0979

picture of Sodium Cyanide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 180.000 C1 Na3 N2 0.000
N2 C1 Na3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-31G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.120      
2 N -0.498      
3 Na 0.618      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.159 10.159
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.117 0.000 0.000
y 0.000 -17.117 0.000
z 0.000 0.000 -14.999
Traceless
 xyz
x -1.059 0.000 0.000
y 0.000 -1.059 0.000
z 0.000 0.000 2.118
Polar
3z2-r24.236
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.753 0.000 0.000
y 0.000 2.753 0.000
z 0.000 0.000 6.009


<r2> (average value of r2) Å2
<r2> 56.405
(<r2>)1/2 7.510