return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for NaCN (Sodium Cyanide)

using model chemistry: B3LYP/6-311G**

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C*V 1Σ
1 2 yes CS 1A
1 3 no C*V 1Σ

Conformer 1 (C*V)

Jump to S1C2 S1C3
Energy calculated at B3LYP/6-311G**
 hartrees
Energy at 0K-255.174791
Energy at 298.15K-255.174219
HF Energy-255.174791
Nuclear repulsion energy46.691252
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-311G**
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2222 2148 2.87      
2 Σ 370 357 54.50      
3 Π 130 126 16.41      
3 Π 130 126 16.41      

Unscaled Zero Point Vibrational Energy (zpe) 1425.7 cm-1
Scaled (by 0.9668) Zero Point Vibrational Energy (zpe) 1378.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-311G**
B
0.15488

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-311G**

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -0.686
N2 0.000 0.000 -1.850
Na3 0.000 0.000 1.551

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.16352.2376
N21.16353.4011
Na32.23763.4011

picture of Sodium Cyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 0.000 C1 Na3 N2 0.000
N2 C1 Na3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-311G** Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.341      
2 N -0.309      
3 Na 0.650      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.387 10.387
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.204 0.000 0.000
y 0.000 -17.204 0.000
z 0.000 0.000 -13.441
Traceless
 xyz
x -1.881 0.000 0.000
y 0.000 -1.881 0.000
z 0.000 0.000 3.762
Polar
3z2-r27.525
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.709 0.000 -0.000
y 0.000 2.709 0.000
z -0.000 0.000 5.839


<r2> (average value of r2) Å2
<r2> 63.211
(<r2>)1/2 7.951

Conformer 2 (CS)

Jump to S1C1 S1C3
Energy calculated at B3LYP/6-311G**
 hartrees
Energy at 0K-255.179480
Energy at 298.15K-255.179229
HF Energy-255.179480
Nuclear repulsion energy51.845673
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-311G**
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 386 373 58.43      
2 A' 177 171 8.60      
3 A' 2120 2050 28.34      

Unscaled Zero Point Vibrational Energy (zpe) 1341.4 cm-1
Scaled (by 0.9668) Zero Point Vibrational Energy (zpe) 1296.9 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-311G**
ABC
1.93416 0.27747 0.24266

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-311G**

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 1.093 0.655 0.000
N2 0.000 1.087 0.000
Na3 -0.596 -1.049 0.000

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.17502.3997
N21.17502.2174
Na32.39972.2174

picture of Sodium Cyanide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 84.068 C1 Na3 N2 29.144
N2 C1 Na3 66.788
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-311G** Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.173      
2 N -0.390      
3 Na 0.563      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -4.537 -7.246 0.000 8.549
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.713 3.381 0.000
y 3.381 -14.176 0.000
z 0.000 0.000 -17.368
Traceless
 xyz
x -3.941 3.381 0.000
y 3.381 4.364 0.000
z 0.000 0.000 -0.423
Polar
3z2-r2-0.847
x2-y2-5.537
xy3.381
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.095 0.076 0.000
y 0.076 3.721 0.000
z 0.000 0.000 2.896


<r2> (average value of r2) Å2
<r2> 44.698
(<r2>)1/2 6.686

Conformer 3 (C*V)

Jump to S1C1 S1C2
Energy calculated at B3LYP/6-311G**
 hartrees
Energy at 0K-255.176015
Energy at 298.15K-255.175188
HF Energy-255.176015
Nuclear repulsion energy48.897189
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-311G**
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2147 2076 118.19      
2 Σ 416 402 61.62      
3 Π 47 45 6.17      
3 Π 47 45 6.17      

Unscaled Zero Point Vibrational Energy (zpe) 1328.5 cm-1
Scaled (by 0.9668) Zero Point Vibrational Energy (zpe) 1284.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-311G**
B
0.17821

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-311G**

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -1.847
N2 0.000 0.000 -0.673
Na3 0.000 0.000 1.435

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.17423.2823
N21.17422.1080
Na33.28232.1080

picture of Sodium Cyanide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 180.000 C1 Na3 N2 0.000
N2 C1 Na3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-311G** Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.210      
2 N -0.480      
3 Na 0.691      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.545 10.545
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.149 0.000 0.000
y 0.000 -17.149 0.000
z 0.000 0.000 -15.952
Traceless
 xyz
x -0.599 0.000 0.000
y 0.000 -0.599 0.000
z 0.000 0.000 1.197
Polar
3z2-r22.395
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.639 0.000 0.000
y 0.000 2.639 0.000
z 0.000 0.000 5.878


<r2> (average value of r2) Å2
<r2> 56.759
(<r2>)1/2 7.534