return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for H2OHCOOH (Water formic acid dimer 2)

using model chemistry: B3LYPultrafine/6-311+G(3df,2pd)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C1 1A
Energy calculated at B3LYPultrafine/6-311+G(3df,2pd)
 hartrees
Energy at 0K-266.312845
Energy at 298.15K-266.316622
Counterpoise corrected energy-266.312456
CP Energy at 298.15K-266.316165
Counterpoise optimized geometry corrected energy 
CP opt. Energy at 298.15K 
Nuclear repulsion energy116.659726
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYPultrafine/6-311+G(3df,2pd)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A 3902 3785 102.22      
2 A 3738 3625 42.52      
3 A 3721 3609 292.51      
4 A 3077 2985 15.21      
5 A 1794 1740 391.31      
6 A 1643 1594 99.11      
7 A 1407 1365 4.27      
8 A 1313 1274 16.12      
9 A 1144 1110 262.13      
10 A 1068 1036 1.99      
11 A 686 665 146.90      
12 A 641 622 49.68      
13 A 510 495 91.10      
14 A 351 341 152.94      
15 A 164 159 7.81      
16 A 67 65 15.54      
17 A 44 43 72.08      
18 A 43 41 54.81      

Unscaled Zero Point Vibrational Energy (zpe) 12656.0 cm-1
Scaled (by 0.97) Zero Point Vibrational Energy (zpe) 12276.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYPultrafine/6-311+G(3df,2pd)
ABC
0.97518 0.08680 0.07975

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYPultrafine/6-311+G(3df,2pd)

Point Group is C1

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
H1 -1.770 0.349 -0.015
O2 -2.487 -0.301 -0.034
O3 0.163 0.840 -0.004
H4 -3.281 0.178 0.215
C5 0.737 -0.216 0.015
O6 2.065 -0.359 0.000
H7 0.242 -1.192 0.046
H8 2.465 0.524 -0.029

Atom - Atom Distances (Å)
  H1 O2 O3 H4 C5 O6 H7 H8
H10.96801.99421.53772.56993.89922.53474.2381
O20.96802.88520.95963.22544.55202.87185.0198
O31.99422.88523.51351.20242.24812.03392.3234
H41.53770.95963.51354.04185.37633.78325.7608
C52.56993.22541.20244.04181.33531.09441.8800
O63.89924.55202.24815.37631.33532.00440.9698
H72.53472.87182.03393.78321.09442.00442.8089
H84.23815.01982.32345.76081.88000.96982.8089

picture of Water formic acid dimer 2 state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
H1 O2 H4 105.835 H1 O3 C5 104.270
O2 H1 O3 152.065 O3 C5 O6 124.639
O3 C5 H7 124.580 C5 O6 H8 108.248
O6 C5 H7 110.782
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYPultrafine/6-311+G(3df,2pd) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 H 0.252      
2 O -0.429      
3 O -0.603      
4 H 0.165      
5 C 0.703      
6 O -0.412      
7 H 0.109      
8 H 0.214      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  1.696 0.839 0.437 1.942
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.310 -0.867 -1.716
y -0.867 -25.149 0.080
z -1.716 0.080 -24.783
Traceless
 xyz
x 5.656 -0.867 -1.716
y -0.867 -3.103 0.080
z -1.716 0.080 -2.553
Polar
3z2-r2-5.106
x2-y25.840
xy-0.867
xz-1.716
yz0.080


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 5.884 -0.243 -0.028
y -0.243 4.622 -0.027
z -0.028 -0.027 3.452


<r2> (average value of r2) Å2
<r2> 0.000
(<r2>)1/2 0.000