return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for H2OHCOOH (Water formic acid dimer 2)

using model chemistry: PBEPBEultrafine/6-311+G(3df,2pd)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C1 1A
Energy calculated at PBEPBEultrafine/6-311+G(3df,2pd)
 hartrees
Energy at 0K-266.024240
Energy at 298.15K-266.028073
Counterpoise corrected energy-266.023794
CP Energy at 298.15K-266.027581
Counterpoise optimized geometry corrected energy 
CP opt. Energy at 298.15K 
Nuclear repulsion energy116.310122
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at PBEPBEultrafine/6-311+G(3df,2pd)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A 3801 3763 81.43      
2 A 3613 3577 34.20      
3 A 3586 3550 326.57      
4 A 2997 2967 15.73      
5 A 1738 1720 353.17      
6 A 1607 1591 84.97      
7 A 1352 1338 2.79      
8 A 1275 1262 13.53      
9 A 1104 1092 230.38      
10 A 1019 1009 4.57      
11 A 686 679 128.85      
12 A 618 612 41.31      
13 A 524 519 115.51      
14 A 345 342 133.51      
15 A 165 164 9.22      
16 A 76 75 107.13      
17 A 71 70 5.48      
18 A 51 50 16.59      

Unscaled Zero Point Vibrational Energy (zpe) 12312.8 cm-1
Scaled (by 0.99) Zero Point Vibrational Energy (zpe) 12189.6 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at PBEPBEultrafine/6-311+G(3df,2pd)
ABC
0.92581 0.08794 0.08048

See section I.F.4 to change rotational constant units
Geometric Data calculated at PBEPBEultrafine/6-311+G(3df,2pd)

Point Group is C1

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
H1 -1.744 0.350 -0.026
O2 -2.471 -0.304 -0.060
O3 0.158 0.862 -0.007
H4 -3.213 0.127 0.387
C5 0.723 -0.212 0.023
O6 2.057 -0.376 0.001
H7 0.212 -1.189 0.072
H8 2.456 0.518 -0.045

Atom - Atom Distances (Å)
  H1 O2 O3 H4 C5 O6 H7 H8
H10.97791.97011.54262.53013.86922.49044.2030
O20.97792.87640.96773.19574.52822.82764.9944
O31.97012.87643.47341.21342.26622.05372.3234
H41.54260.96773.47343.96735.30793.68255.6990
C52.53013.19571.21343.96731.34421.10431.8815
O63.86924.52822.26625.30791.34422.01770.9796
H72.49042.82762.05373.68251.10432.01772.8221
H84.20304.99442.32345.69901.88150.97962.8221

picture of Water formic acid dimer 2 state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
H1 O2 H4 104.905 H1 O3 C5 102.656
O2 H1 O3 153.081 O3 C5 O6 124.691
O3 C5 H7 124.701 C5 O6 H8 107.085
O6 C5 H7 110.608
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at PBEPBEultrafine/6-311+G(3df,2pd) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 H 0.239      
2 O -0.401      
3 O -0.591      
4 H 0.148      
5 C 0.708      
6 O -0.381      
7 H 0.084      
8 H 0.195      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  1.836 0.758 0.750 2.123
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -20.027 -0.462 -2.910
y -0.462 -25.406 0.115
z -2.910 0.115 -24.678
Traceless
 xyz
x 5.015 -0.462 -2.910
y -0.462 -3.054 0.115
z -2.910 0.115 -1.962
Polar
3z2-r2-3.923
x2-y25.379
xy-0.462
xz-2.910
yz0.115


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 6.355 -0.242 -0.041
y -0.242 4.877 -0.057
z -0.041 -0.057 3.646


<r2> (average value of r2) Å2
<r2> 0.000
(<r2>)1/2 0.000