return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for NH3NH3 (Ammonia Dimer)

using model chemistry: B3LYPultrafine/6-311+G(3df,2pd)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no    
Energy calculated at B3LYPultrafine/6-311+G(3df,2pd)
 hartrees
Energy at 0K-113.179174
Energy at 298.15K-113.184313
Counterpoise corrected energy-113.179030
CP Energy at 298.15K-113.184141
Counterpoise optimized geometry corrected energy 
CP opt. Energy at 298.15K 
Nuclear repulsion energy39.484798
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYPultrafine/6-311+G(3df,2pd)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A 3592 3484 8.23      
2 A 3554 3447 58.74      
3 A 3474 3369 2.46      
4 A 3430 3327 93.60      
5 A 1667 1617 15.66      
6 A 1658 1608 15.35      
7 A 1059 1027 103.37      
8 A 1050 1018 184.31      
9 A 373 362 48.69      
10 A 129 125 23.90      
11 A 92 89 56.98      
12 A 3594 3486 7.28      
13 A 3591 3483 1.75      
14 A 1689 1638 10.80      
15 A 1664 1614 19.05      
16 A 251 244 39.54      
17 A 118 115 37.22      
18 A 36 35 13.52      

Unscaled Zero Point Vibrational Energy (zpe) 15510.1 cm-1
Scaled (by 0.97) Zero Point Vibrational Energy (zpe) 15044.8 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYPultrafine/6-311+G(3df,2pd)
ABC
3.95686 0.16916 0.16732

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYPultrafine/6-311+G(3df,2pd)

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
H1 0.153 0.717 0.000
N2 -0.033 1.718 0.000
N3 -0.033 -1.594 0.000
H4 0.421 2.115 0.814
H5 0.421 2.115 -0.814
H6 -1.047 -1.573 0.000
H7 0.257 -2.121 -0.816
H8 0.257 -2.121 0.816

Atom - Atom Distances (Å)
  H1 N2 N3 H4 H5 H6 H7 H8
H11.01802.31931.63961.63962.58542.95472.9547
N21.01803.31271.01321.01323.44363.93533.9353
N32.31933.31273.82483.82481.01371.01331.0133
H41.63961.01323.82481.62854.05184.54144.2387
H51.63961.01323.82481.62854.05184.23874.5414
H62.58543.44361.01374.05184.05181.63281.6328
H72.95473.93531.01334.54144.23871.63281.6318
H82.95473.93531.01334.23874.54141.63281.6318

picture of Ammonia Dimer state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
H1 N2 H4 107.637 H1 N2 H5 107.637
H1 H3 N6 93.381 H1 H3 H7 119.636
H1 H3 H8 119.636 N2 H1 H3 164.864
H4 N2 H5 106.952 N6 H3 H7 107.319
N6 H3 H8 107.319 H7 H3 H8 107.251
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYPultrafine/6-311+G(3df,2pd) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 H 0.220      
2 N -0.425      
3 N -0.358      
4 H 0.104      
5 H 0.104      
6 H 0.130      
7 H 0.112      
8 H 0.112      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.893 -2.188 0.000 2.363
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -15.993 3.250 0.000
y 3.250 -12.225 0.000
z 0.000 0.000 -12.818
Traceless
 xyz
x -3.472 3.250 0.000
y 3.250 2.181 0.000
z 0.000 0.000 1.291
Polar
3z2-r22.581
x2-y2-3.768
xy3.250
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 3.978 0.102 0.000
y 0.102 4.634 0.000
z 0.000 0.000 3.630


<r2> (average value of r2) Å2
<r2> 0.000
(<r2>)1/2 0.000