return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for BeO (beryllium oxide)

using model chemistry: CCSD/6-31G*

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C*V 1Σ
Energy calculated at CCSD/6-31G*
 hartrees
Energy at 0K-89.641596
Energy at 298.15K-89.640679
HF Energy-89.407287
Nuclear repulsion energy12.671754
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCSD/6-31G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 1553 1466        

Unscaled Zero Point Vibrational Energy (zpe) 776.3 cm-1
Scaled (by 0.9443) Zero Point Vibrational Energy (zpe) 733.0 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCSD/6-31G*
B
1.63857

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCSD/6-31G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Be1 0.000 0.000 -0.891
O2 0.000 0.000 0.445

Atom - Atom Distances (Å)
  Be1 O2
Be11.3360
O21.3360

picture of beryllium oxide state 1 conformation 1
More geometry information
Electronic energy levels

Electronic state

Charges, Dipole, Quadrupole and Polarizability