return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for LiCN (lithium cyanide)

using model chemistry: mPW1PW91/6-31G(2df,p)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C*V LiCN 1Σ
1 2 yes CS 1A'
1 3 no C*V LiNC 1Σ

Conformer 1 (C*V LiCN)

Jump to S1C2 S1C3
Energy calculated at mPW1PW91/6-31G(2df,p)
 hartrees
Energy at 0K-100.339332
Energy at 298.15K-100.338344
HF Energy-100.339332
Nuclear repulsion energy27.716470
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at mPW1PW91/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2268 2165 11.66      
2 Σ 634 605 109.81      
3 Π 154 147 36.75      
3 Π 154 147 36.75      

Unscaled Zero Point Vibrational Energy (zpe) 1604.6 cm-1
Scaled (by 0.9547) Zero Point Vibrational Energy (zpe) 1531.9 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at mPW1PW91/6-31G(2df,p)
B
0.38161

See section I.F.4 to change rotational constant units
Geometric Data calculated at mPW1PW91/6-31G(2df,p)

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 -2.057
C2 0.000 0.000 -0.152
N3 0.000 0.000 1.012

Atom - Atom Distances (Å)
  Li1 C2 N3
Li11.90523.0691
C21.90521.1639
N33.06911.1639

picture of lithium cyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 180.000 Li1 N3 C2 0.000
C2 Li1 N3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at mPW1PW91/6-31G(2df,p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.208      
2 C 0.138      
3 N -0.346      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 -8.804 8.804
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -14.079 0.000 0.000
y 0.000 -14.079 0.000
z 0.000 0.000 1.617
Traceless
 xyz
x -7.848 0.000 0.000
y 0.000 -7.848 0.000
z 0.000 0.000 15.696
Polar
3z2-r231.391
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.689 0.000 0.000
y 0.000 2.689 0.000
z 0.000 0.000 4.181


<r2> (average value of r2) Å2
<r2> 25.528
(<r2>)1/2 5.052

Conformer 2 (CS)

Jump to S1C1 S1C3
Energy calculated at mPW1PW91/6-31G(2df,p)
 hartrees
Energy at 0K-100.346456
Energy at 298.15K-100.345722
HF Energy-100.346456
Nuclear repulsion energy29.330400
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at mPW1PW91/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 675 645 129.86      
2 A' 181 173 28.55      
3 A' 2132 2035 40.18      

Unscaled Zero Point Vibrational Energy (zpe) 1494.2 cm-1
Scaled (by 0.9547) Zero Point Vibrational Energy (zpe) 1426.5 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at mPW1PW91/6-31G(2df,p)
ABC
2.09642 0.80673 0.58255

See section I.F.4 to change rotational constant units
Geometric Data calculated at mPW1PW91/6-31G(2df,p)

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 1.424 -0.599 0.000
C2 -0.712 -0.367 0.000
N3 0.000 0.571 0.000

Atom - Atom Distances (Å)
  Li1 C2 N3
Li12.14851.8429
C22.14851.1780
N31.84291.1780

picture of lithium cyanide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 58.997 Li1 N3 C2 87.781
C2 Li1 N3 33.222
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at mPW1PW91/6-31G(2df,p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.232      
2 C -0.016      
3 N -0.216      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  6.329 -2.428 0.000 6.779
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -5.762 -5.919 0.000
y -5.919 -14.995 0.000
z 0.000 0.000 -14.421
Traceless
 xyz
x 8.946 -5.919 0.000
y -5.919 -4.904 0.000
z 0.000 0.000 -4.042
Polar
3z2-r2-8.084
x2-y29.234
xy-5.919
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 3.325 0.381 0.000
y 0.381 3.386 0.000
z 0.000 0.000 2.792


<r2> (average value of r2) Å2
<r2> 20.617
(<r2>)1/2 4.541

Conformer 3 (C*V LiNC)

Jump to S1C1 S1C2
Energy calculated at mPW1PW91/6-31G(2df,p)
 hartrees
Energy at 0K-100.345354
Energy at 298.15K-100.344245
HF Energy-100.345354
Nuclear repulsion energy28.448996
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at mPW1PW91/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2173 2074 165.33      
2 Σ 738 705 139.90      
3 Π 104 99 25.67      
3 Π 104 99 25.67      

Unscaled Zero Point Vibrational Energy (zpe) 1558.9 cm-1
Scaled (by 0.9547) Zero Point Vibrational Energy (zpe) 1488.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at mPW1PW91/6-31G(2df,p)
B
0.44069

See section I.F.4 to change rotational constant units
Geometric Data calculated at mPW1PW91/6-31G(2df,p)

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 1.871
C2 0.000 0.000 -1.065
N3 0.000 0.000 0.111

Atom - Atom Distances (Å)
  Li1 C2 N3
Li12.93671.7603
C22.93671.1764
N31.76031.1764

picture of lithium cyanide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 0.000 Li1 N3 C2 180.000
C2 Li1 N3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at mPW1PW91/6-31G(2df,p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.375      
2 C -0.279      
3 N -0.095      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 8.598 8.598
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -14.120 0.000 0.000
y 0.000 -14.120 0.000
z 0.000 0.000 -1.800
Traceless
 xyz
x -6.160 0.000 0.000
y 0.000 -6.160 0.000
z 0.000 0.000 12.319
Polar
3z2-r224.639
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.646 0.000 0.000
y 0.000 2.646 0.000
z 0.000 0.000 4.198


<r2> (average value of r2) Å2
<r2> 23.656
(<r2>)1/2 4.864