return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for Cl2 (Chlorine diatomic)

using model chemistry: QCISD/cc-pVTZ

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes D*H 1Σg
Energy calculated at QCISD/cc-pVTZ
 hartrees
Energy at 0K-919.409466
Energy at 298.15K-919.409442
HF Energy-918.998496
Nuclear repulsion energy76.094556
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at QCISD/cc-pVTZ
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σg 562 537 0.00      

Unscaled Zero Point Vibrational Energy (zpe) 280.9 cm-1
Scaled (by 0.9555) Zero Point Vibrational Energy (zpe) 268.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at QCISD/cc-pVTZ
B
0.23870

See section I.F.4 to change rotational constant units
Geometric Data calculated at QCISD/cc-pVTZ

Point Group is D∞h

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Cl1 0.000 0.000 1.005
Cl2 0.000 0.000 -1.005

Atom - Atom Distances (Å)
  Cl1 Cl2
Cl12.0098
Cl22.0098

picture of Chlorine diatomic state 1 conformation 1
More geometry information
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability