return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for Li3 (Lithium trimer)

using model chemistry: ROMP2/STO-3G

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C2V 2B2
Energy calculated at ROMP2/STO-3G
 hartrees
Energy at 0K-21.986205
Energy at 298.15K-21.986221
HF Energy-21.962281
Nuclear repulsion energy4.866383
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at ROMP2/STO-3G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A1 362 362        
2 A1 169 169        
3 B2 378 378        

Unscaled Zero Point Vibrational Energy (zpe) 454.4 cm-1
Scaled (by 1) Zero Point Vibrational Energy (zpe) 454.4 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at ROMP2/STO-3G
ABC
0.75708 0.42210 0.27101

See section I.F.4 to change rotational constant units
Geometric Data calculated at ROMP2/STO-3G

Point Group is C2v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 1.455
Li2 0.000 1.687 -0.727
Li3 0.000 -1.687 -0.727

Atom - Atom Distances (Å)
  Li1 Li2 Li3
Li12.75802.7580
Li22.75803.3741
Li32.75803.3741

picture of Lithium trimer state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li2 Li1 Li3 75.424
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability