return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for NaCN (Sodium Cyanide)

using model chemistry: SVWN/6-311G*

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C*V 1Σ
1 2 yes CS 1A
1 3 no C*V 1Σ

Conformer 1 (C*V)

Jump to S1C2 S1C3
Energy calculated at SVWN/6-311G*
 hartrees
Energy at 0K-253.999625
Energy at 298.15K-253.999064
HF Energy-253.999625
Nuclear repulsion energy47.012391
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at SVWN/6-311G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2197 2176 4.71      
2 Σ 379 376 49.85      
3 Π 132 130 17.02      
3 Π 132 130 17.02      

Unscaled Zero Point Vibrational Energy (zpe) 1419.9 cm-1
Scaled (by 0.9904) Zero Point Vibrational Energy (zpe) 1406.2 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at SVWN/6-311G*
B
0.15816

See section I.F.4 to change rotational constant units
Geometric Data calculated at SVWN/6-311G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -0.670
N2 0.000 0.000 -1.836
Na3 0.000 0.000 1.534

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.16552.2036
N21.16553.3691
Na32.20363.3691

picture of Sodium Cyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 0.000 C1 Na3 N2 0.000
N2 C1 Na3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at SVWN/6-311G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.332      
2 N -0.289      
3 Na 0.621      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.052 10.052
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.308 0.000 0.000
y 0.000 -17.308 0.000
z 0.000 0.000 -13.509
Traceless
 xyz
x -1.899 0.000 0.000
y 0.000 -1.899 0.000
z 0.000 0.000 3.799
Polar
3z2-r27.598
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.871 0.000 0.000
y 0.000 2.871 0.000
z 0.000 0.000 6.220


<r2> (average value of r2) Å2
<r2> 62.168
(<r2>)1/2 7.885

Conformer 2 (CS)

Jump to S1C1 S1C3
Energy calculated at SVWN/6-311G*
 hartrees
Energy at 0K-254.004005
Energy at 298.15K-254.003799
HF Energy-254.004005
Nuclear repulsion energy52.467776
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at SVWN/6-311G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 2099 2078 18.55      
2 A' 398 394 58.55      
3 A' 201 199 6.39      

Unscaled Zero Point Vibrational Energy (zpe) 1348.7 cm-1
Scaled (by 0.9904) Zero Point Vibrational Energy (zpe) 1335.8 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at SVWN/6-311G*
ABC
1.90584 0.29042 0.25202

See section I.F.4 to change rotational constant units
Geometric Data calculated at SVWN/6-311G*

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 1.107 0.663 0.000
N2 0.000 1.066 0.000
Na3 -0.604 -1.040 0.000

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.17792.4139
N21.17792.1914
Na32.41392.1914

picture of Sodium Cyanide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 85.970 C1 Na3 N2 29.127
N2 C1 Na3 64.903
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at SVWN/6-311G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.173      
2 N -0.349      
3 Na 0.522      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -4.438 -6.885 0.000 8.192
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -19.608 3.532 0.000
y 3.532 -14.396 0.000
z 0.000 0.000 -17.476
Traceless
 xyz
x -3.672 3.532 0.000
y 3.532 4.146 0.000
z 0.000 0.000 -0.474
Polar
3z2-r2-0.948
x2-y2-5.212
xy3.532
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 4.190 0.093 -0.000
y 0.093 3.950 0.000
z -0.000 0.000 3.045


<r2> (average value of r2) Å2
<r2> 43.485
(<r2>)1/2 6.594

Conformer 3 (C*V)

Jump to S1C1 S1C2
Energy calculated at SVWN/6-311G*
 hartrees
Energy at 0K-253.999127
Energy at 298.15K-253.998331
HF Energy-253.999127
Nuclear repulsion energy49.229485
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at SVWN/6-311G*
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2129 2109 99.00      
2 Σ 427 423 54.94      
3 Π 53 52 5.84      
3 Π 53 52 5.83      

Unscaled Zero Point Vibrational Energy (zpe) 1330.9 cm-1
Scaled (by 0.9904) Zero Point Vibrational Energy (zpe) 1318.1 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at SVWN/6-311G*
B
0.18160

See section I.F.4 to change rotational constant units
Geometric Data calculated at SVWN/6-311G*

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.000 -1.835
N2 0.000 0.000 -0.659
Na3 0.000 0.000 1.420

Atom - Atom Distances (Å)
  C1 N2 Na3
C11.17543.2552
N21.17542.0798
Na33.25522.0798

picture of Sodium Cyanide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 N2 Na3 180.000 C1 Na3 N2 0.000
N2 C1 Na3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at SVWN/6-311G* Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.228      
2 N -0.440      
3 Na 0.668      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 10.355 10.355
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -17.274 0.000 0.000
y 0.000 -17.274 0.000
z 0.000 0.000 -16.177
Traceless
 xyz
x -0.548 0.000 0.000
y 0.000 -0.548 0.000
z 0.000 0.000 1.097
Polar
3z2-r22.194
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.814 0.000 0.000
y 0.000 2.814 -0.000
z 0.000 -0.000 6.591


<r2> (average value of r2) Å2
<r2> 55.997
(<r2>)1/2 7.483