return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for LiCN (lithium cyanide)

using model chemistry: B1B95/STO-3G

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C*V LiCN 1Σ
1 2 yes CS 1A'
1 3 no C*V LiNC 1Σ

Conformer 1 (C*V LiCN)

Jump to S1C2 S1C3
Energy calculated at B1B95/STO-3G
 hartrees
Energy at 0K-99.012911
Energy at 298.15K-99.011956
HF Energy-99.012911
Nuclear repulsion energy27.300198
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B1B95/STO-3G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2257 1993 172.89      
2 Σ 728 643 79.23      
3 Π 178 157 43.48      
3 Π 178 157 43.48      

Unscaled Zero Point Vibrational Energy (zpe) 1670.6 cm-1
Scaled (by 0.883) Zero Point Vibrational Energy (zpe) 1475.1 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B1B95/STO-3G
B
0.38561

See section I.F.4 to change rotational constant units
Geometric Data calculated at B1B95/STO-3G

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 -2.027
C2 0.000 0.000 -0.179
N3 0.000 0.000 1.022

Atom - Atom Distances (Å)
  Li1 C2 N3
Li11.84803.0492
C21.84801.2013
N33.04921.2013

picture of lithium cyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 180.000 Li1 N3 C2 0.000
C2 Li1 N3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B1B95/STO-3G Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.241      
2 C -0.019      
3 N -0.222      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 -6.828 6.828
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -13.096 0.000 0.000
y 0.000 -13.096 0.000
z 0.000 0.000 -0.046
Traceless
 xyz
x -6.525 0.000 0.000
y 0.000 -6.525 0.000
z 0.000 0.000 13.050
Polar
3z2-r226.100
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 1.572 0.000 0.000
y 0.000 1.572 0.000
z 0.000 0.000 3.853


<r2> (average value of r2) Å2
<r2> 25.296
(<r2>)1/2 5.029

Conformer 2 (CS)

Jump to S1C1 S1C3
Energy calculated at B1B95/STO-3G
 hartrees
Energy at 0K-99.021039
Energy at 298.15K-99.020521
HF Energy-99.021039
Nuclear repulsion energy29.483652
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B1B95/STO-3G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 2131 1882 64.85      
2 A' 816 720 101.23      
3 A' 360 318 1.85      

Unscaled Zero Point Vibrational Energy (zpe) 1653.6 cm-1
Scaled (by 0.883) Zero Point Vibrational Energy (zpe) 1460.1 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B1B95/STO-3G
ABC
1.78386 0.99247 0.63769

See section I.F.4 to change rotational constant units
Geometric Data calculated at B1B95/STO-3G

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 1.252 -0.676 0.000
C2 -0.626 -0.403 0.000
N3 0.000 0.635 0.000

Atom - Atom Distances (Å)
  Li1 C2 N3
Li11.89721.8129
C21.89721.2123
N31.81291.2123

picture of lithium cyanide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 67.201 Li1 N3 C2 74.740
C2 Li1 N3 38.059
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B1B95/STO-3G Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.227      
2 C 0.015      
3 N -0.242      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  4.048 -1.860 0.000 4.455
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -7.130 -4.882 0.000
y -4.882 -14.431 0.000
z 0.000 0.000 -13.647
Traceless
 xyz
x 6.909 -4.882 0.000
y -4.882 -4.042 0.000
z 0.000 0.000 -2.866
Polar
3z2-r2-5.733
x2-y27.301
xy-4.882
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 2.630 -0.372 0.000
y -0.372 2.065 0.000
z 0.000 0.000 1.652


<r2> (average value of r2) Å2
<r2> 19.551
(<r2>)1/2 4.422

Conformer 3 (C*V LiNC)

Jump to S1C1 S1C2
Energy calculated at B1B95/STO-3G
 hartrees
Energy at 0K-99.013456
Energy at 298.15K-99.012262
HF Energy-99.013456
Nuclear repulsion energy28.124089
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B1B95/STO-3G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2114 1867 454.55      
2 Σ 866 764 100.41      
3 Π 84 74 31.59      
3 Π 84 74 31.59      

Unscaled Zero Point Vibrational Energy (zpe) 1574.1 cm-1
Scaled (by 0.883) Zero Point Vibrational Energy (zpe) 1390.0 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B1B95/STO-3G
B
0.45097

See section I.F.4 to change rotational constant units
Geometric Data calculated at B1B95/STO-3G

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Li1 0.000 0.000 1.821
C2 0.000 0.000 -1.077
N3 0.000 0.000 0.143

Atom - Atom Distances (Å)
  Li1 C2 N3
Li12.89861.6786
C22.89861.2200
N31.67861.2200

picture of lithium cyanide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Li1 C2 N3 0.000 Li1 N3 C2 180.000
C2 Li1 N3 0.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B1B95/STO-3G Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 Li 0.316      
2 C -0.005      
3 N -0.311      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 6.125 6.125
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -12.931 0.000 0.000
y 0.000 -12.931 0.000
z 0.000 0.000 -3.586
Traceless
 xyz
x -4.673 0.000 0.000
y 0.000 -4.673 0.000
z 0.000 0.000 9.345
Polar
3z2-r218.690
x2-y20.000
xy0.000
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 1.402 0.000 0.000
y 0.000 1.402 0.000
z 0.000 0.000 4.317


<r2> (average value of r2) Å2
<r2> 23.188
(<r2>)1/2 4.815