return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for AlNC (Aluminum isocyanide)

using model chemistry: B2PLYP=FULL/6-31G(2df,p)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C*V 1Σ
Energy calculated at B2PLYP=FULL/6-31G(2df,p)
 hartrees
Energy at 0K-335.080231
Energy at 298.15K 
HF Energy-334.950645
Nuclear repulsion energy58.384826
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B2PLYP=FULL/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2081 2081 368.08 79.62 0.12 0.22
2 Σ 573 573 161.49 17.52 0.71 0.83
3 Π 96 96 3.45 8.10 0.75 0.86
3 Π 96 96 3.45 8.10 0.75 0.86

Unscaled Zero Point Vibrational Energy (zpe) 1423.0 cm-1
Scaled (by 1) Zero Point Vibrational Energy (zpe) 1423.0 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B2PLYP=FULL/6-31G(2df,p)
B
0.19808

See section I.F.4 to change rotational constant units
Geometric Data calculated at B2PLYP=FULL/6-31G(2df,p)

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Al1 0.000 0.000 1.198
N2 0.000 0.000 -0.650
C3 0.000 0.000 -1.837

Atom - Atom Distances (Å)
  Al1 N2 C3
Al11.84823.0349
N21.84821.1867
C33.03491.1867

picture of Aluminum isocyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Al1 N2 C3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability