return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for Be(OH)2 (Beryllium hydroxide)

using model chemistry: CCD/6-31G

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 no C2V 1A1
1 2 yes C2 1A
1 3 no D*H 1Σg

Conformer 1 (C2V)

Jump to S1C2 S1C3
Energy calculated at CCD/6-31G
 hartrees
Energy at 0K-165.874616
Energy at 298.15K 
HF Energy-165.601993
Nuclear repulsion energy49.056636
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCD/6-31G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A1 4064 3900 9.93      
2 A1 780 749 5.37      
3 A1 393 377 153.17      
4 A1 235 225 434.47      
5 A2 101i 97i 0.00      
6 B1 381 366 58.30      
7 B2 4063 3899 300.21      
8 B2 1658 1591 439.69      
9 B2 170 163 95.17      

Unscaled Zero Point Vibrational Energy (zpe) 5821.3 cm-1
Scaled (by 0.9595) Zero Point Vibrational Energy (zpe) 5585.6 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCD/6-31G
ABC
127.76352 0.22572 0.22532

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCD/6-31G

Point Group is C2v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Be1 0.000 0.000 -0.008
O2 0.000 1.412 0.031
O3 0.000 -1.412 0.031
H4 0.000 2.327 -0.230
H5 0.000 -2.327 -0.230

Atom - Atom Distances (Å)
  Be1 O2 O3 H4 H5
Be11.41241.41242.33752.3375
O21.41242.82380.95123.7478
O31.41242.82383.74780.9512
H42.33750.95123.74784.6538
H52.33753.74780.95124.6538

picture of Beryllium hydroxide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Be1 O2 H4 162.585 Be1 O3 H5 162.585
O2 Be1 O3 176.905
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability

Conformer 2 (C2)

Jump to S1C1 S1C3
Energy calculated at CCD/6-31G
 hartrees
Energy at 0K-165.874647
Energy at 298.15K-165.875450
HF Energy-165.601840
Nuclear repulsion energy49.019194
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCD/6-31G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A 4058 3893 5.37      
2 A 778 747 2.76      
3 A 385 370 107.81      
4 A 231 221 216.22      
5 A 110 106 289.90      
6 B 4057 3893 295.98      
7 B 1655 1588 436.30      
8 B 383 368 103.94      
9 B 219 210 375.17      

Unscaled Zero Point Vibrational Energy (zpe) 5937.8 cm-1
Scaled (by 0.9595) Zero Point Vibrational Energy (zpe) 5697.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCD/6-31G
ABC
97.98345 0.22532 0.22525

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCD/6-31G

Point Group is C2

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Be1 0.000 0.000 0.005
O2 0.000 1.414 -0.023
O3 0.000 -1.414 -0.023
H4 0.239 2.314 0.171
H5 -0.239 -2.314 0.171

Atom - Atom Distances (Å)
  Be1 O2 O3 H4 H5
Be11.41401.41402.33242.3324
O21.41402.82740.95173.7406
O31.41402.82743.74060.9517
H42.33240.95173.74064.6530
H52.33243.74060.95174.6530

picture of Beryllium hydroxide state 1 conformation 2
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Be1 O2 H4 160.380 Be1 O3 H5 160.380
O2 Be1 O3 177.734
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability

Conformer 3 (D*H)

Jump to S1C1 S1C2
Energy calculated at CCD/6-31G
 hartrees
Energy at 0K-165.874474
Energy at 298.15K 
HF Energy-165.602766
Nuclear repulsion energy49.177116
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCD/6-31G
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σg 4088 3923 0.00      
2 Σg 786 754 0.00      
3 Σu 4087 3921 348.11      
4 Σu 1670 1602 467.03      
5 Πg 171i 165i 0.00      
5 Πg 171i 165i 0.00      
6 Πu 383 367 43.82      
6 Πu 383 367 43.82      
7 Πu 187i 179i 616.18      
7 Πu 187i 179i 616.18      

Unscaled Zero Point Vibrational Energy (zpe) 5339.7 cm-1
Scaled (by 0.9595) Zero Point Vibrational Energy (zpe) 5123.5 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCD/6-31G
B
0.22616

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCD/6-31G

Point Group is D∞h

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Be1 0.000 0.000 0.000
O2 0.000 0.000 1.407
O3 0.000 0.000 -1.407
H4 0.000 0.000 2.357
H5 0.000 0.000 -2.357

Atom - Atom Distances (Å)
  Be1 O2 O3 H4 H5
Be11.40721.40722.35662.3566
O21.40722.81440.94943.7638
O31.40722.81443.76380.9494
H42.35660.94943.76384.7132
H52.35663.76380.94944.7132

picture of Beryllium hydroxide state 1 conformation 3
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Be1 O2 H4 180.000 Be1 O3 H5 180.000
O2 Be1 O3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability