return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for AlCN (Aluminum monocyanide)

using model chemistry: CCSD(T)=FULL/cc-pVQZ

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C*V 1Σ
Energy calculated at CCSD(T)=FULL/cc-pVQZ
 hartrees
Energy at 0K-334.803932
Energy at 298.15K 
HF Energy-334.267483
Nuclear repulsion energy55.436468
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at CCSD(T)=FULL/cc-pVQZ
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 2201 2125        
2 Σ 518 500        
3 Π 203 196        
3 Π 203 196        

Unscaled Zero Point Vibrational Energy (zpe) 1562.4 cm-1
Scaled (by 0.9656) Zero Point Vibrational Energy (zpe) 1508.7 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at CCSD(T)=FULL/cc-pVQZ
B
0.17214

See section I.F.4 to change rotational constant units
Geometric Data calculated at CCSD(T)=FULL/cc-pVQZ

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
Al1 0.000 0.000 1.297
C2 0.000 0.000 -0.670
N3 0.000 0.000 -1.835

Atom - Atom Distances (Å)
  Al1 C2 N3
Al11.96773.1324
C21.96771.1647
N33.13241.1647

picture of Aluminum monocyanide state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
Al1 C2 N3 180.000
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability