return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for BP (Boron monophosphide)

using model chemistry: G4

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C*V 3Π
2 1 yes C*V 1Σ

State 1 (3Π)

Jump to S2C1
Energy calculated at G4
 hartrees
Energy at 0K-365.902804
Energy at 298.15K-365.899452
HF Energy-366.043373
Nuclear repulsion energy22.706981
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 949 916 6.05      

Unscaled Zero Point Vibrational Energy (zpe) 474.4 cm-1
Scaled (by 0.965) Zero Point Vibrational Energy (zpe) 457.8 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-31G(2df,p)
B
0.67938

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-31G(2df,p)

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
B1 0.000 0.000 -1.311
P2 0.000 0.000 0.437

Atom - Atom Distances (Å)
  B1 P2
B11.7478
P21.7478

picture of Boron monophosphide state 1 conformation 1
More geometry information
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-31G(2df,p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 B 0.109      
2 P -0.109      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 -0.402 0.402
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 0.000 0.000 0.000


<r2> (average value of r2) Å2
<r2> 23.276
(<r2>)1/2 4.825

State 2 (1Σ)

Jump to S1C1
Energy calculated at G4
 hartrees
Energy at 0K-365.894058
Energy at 298.15K-365.890724
HF Energy-366.016442
Nuclear repulsion energy23.863797
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-31G(2df,p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Σ 1074 1037 0.58      

Unscaled Zero Point Vibrational Energy (zpe) 537.1 cm-1
Scaled (by 0.965) Zero Point Vibrational Energy (zpe) 518.3 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-31G(2df,p)
B
0.75036

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-31G(2df,p)

Point Group is C∞v

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
B1 0.000 0.000 -1.247
P2 0.000 0.000 0.416

Atom - Atom Distances (Å)
  B1 P2
B11.6631
P21.6631

picture of Boron monophosphide state 2 conformation 1
More geometry information
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-31G(2df,p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 B 0.132      
2 P -0.132      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 -1.285 1.285
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 0.000 0.000 0.000


<r2> (average value of r2) Å2
<r2> 21.431
(<r2>)1/2 4.629