return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for C4H8O2 (1,4-Dioxane)

using model chemistry: B3LYP/6-311+G(3df,2p)

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes C2H 1Ag
Energy calculated at B3LYP/6-311+G(3df,2p)
 hartrees
Energy at 0K-307.773522
Energy at 298.15K-307.784724
Nuclear repulsion energy264.225429
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/6-311+G(3df,2p)
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 Ag 3080 2978 0.00      
2 Ag 2969 2871 0.00      
3 Ag 1496 1447 0.00      
4 Ag 1415 1369 0.00      
5 Ag 1327 1283 0.00      
6 Ag 1147 1109 0.00      
7 Ag 1017 984 0.00      
8 Ag 844 816 0.00      
9 Ag 440 425 0.00      
10 Ag 411 398 0.00      
11 Au 3078 2977 91.45      
12 Au 2962 2864 50.68      
13 Au 1485 1436 1.47      
14 Au 1388 1343 12.21      
15 Au 1281 1239 40.99      
16 Au 1136 1099 178.48      
17 Au 1108 1071 13.88      
18 Au 892 863 18.76      
19 Au 250 242 0.80      
20 Bg 3078 2977 0.00      
21 Bg 2974 2876 0.00      
22 Bg 1485 1436 0.00      
23 Bg 1364 1319 0.00      
24 Bg 1240 1199 0.00      
25 Bg 1132 1095 0.00      
26 Bg 862 834 0.00      
27 Bg 492 476 0.00      
28 Bu 3079 2978 40.57      
29 Bu 2979 2881 161.57      
30 Bu 1492 1443 13.24      
31 Bu 1408 1362 2.42      
32 Bu 1317 1274 11.06      
33 Bu 1064 1029 9.67      
34 Bu 885 855 71.69      
35 Bu 615 595 14.74      
36 Bu 263 255 18.74      

Unscaled Zero Point Vibrational Energy (zpe) 26728.0 cm-1
Scaled (by 0.967) Zero Point Vibrational Energy (zpe) 25846.0 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/6-311+G(3df,2p)
ABC
0.16884 0.15693 0.09122

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/6-311+G(3df,2p)

Point Group is C2h

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 0.000 0.760 1.173
C2 0.000 0.760 -1.173
C3 0.000 -0.760 1.173
C4 0.000 -0.760 -1.173
O5 -0.627 -1.263 0.000
O6 0.627 1.263 0.000
H7 -1.032 1.131 1.230
H8 -1.032 1.131 -1.230
H9 1.032 -1.131 -1.230
H10 1.032 -1.131 1.230
H11 0.561 1.150 -2.022
H12 0.561 1.150 2.022
H13 -0.561 -1.150 -2.022
H14 -0.561 -1.150 2.022

Atom - Atom Distances (Å)
  C1 C2 C3 C4 O5 O6 H7 H8 H9 H10 H11 H12 H13 H14
C12.34561.52052.79532.42131.42191.09832.64173.22792.15563.26741.09033.76482.1648
C22.34562.79531.52052.42131.42192.64171.09832.15563.22791.09033.26742.16483.7648
C31.52052.79532.34561.42192.42132.15563.22792.64171.09833.76482.16483.26741.0903
C42.79531.52052.34561.42192.42133.22792.15561.09832.64172.16483.76481.09033.2674
O52.42132.42131.42191.42192.82052.72252.72252.06982.06983.36543.36542.02652.0265
O61.42191.42192.42132.42132.82052.06982.06982.72252.72252.02652.02653.36543.3654
H71.09832.64172.15563.22792.72252.06982.46103.92903.06283.62211.77934.00102.4606
H82.64171.09833.22792.15562.72252.06982.46103.06283.92901.77933.62212.46064.0010
H93.22792.15562.64171.09832.06982.72253.92903.06282.46102.46064.00101.77933.6221
H102.15563.22791.09832.64172.06982.72253.06283.92902.46104.00102.46063.62211.7793
H113.26741.09033.76482.16483.36542.02653.62211.77932.46064.00104.04462.55974.7865
H121.09033.26742.16483.76483.36542.02651.77933.62214.00102.46064.04464.78652.5597
H133.76482.16483.26741.09032.02653.36544.00102.46061.77933.62212.55974.78654.0446
H142.16483.76481.09033.26742.02653.36542.46064.00103.62211.77934.78652.55974.0446

picture of 1,4-Dioxane state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 C3 O5 110.713 C1 C3 H10 109.752
C1 C3 H14 110.958 C1 O6 C2 111.147
C2 C4 O5 110.713 C2 C4 H9 109.752
C2 C4 H13 110.958 C3 C1 O6 110.713
C3 C1 H7 109.752 C3 C1 H12 110.958
C3 O5 C4 111.147 C4 C2 O6 110.713
C4 C2 H8 109.752 C4 C2 H11 110.958
O5 C3 H10 109.769 O5 C3 H14 106.805
O5 C4 H9 109.769 O5 C4 H13 106.805
O6 C1 H7 109.769 O6 C1 H12 106.805
O6 C2 H8 109.769 O6 C2 H11 106.805
H7 C1 H12 108.782 H8 C2 H11 108.782
H9 C4 H13 108.782 H10 C3 H14 108.782
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/6-311+G(3df,2p) Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C 0.048      
2 C 0.048      
3 C 0.048      
4 C 0.048      
5 O -0.675      
6 O -0.675      
7 H 0.146      
8 H 0.146      
9 H 0.146      
10 H 0.146      
11 H 0.144      
12 H 0.144      
13 H 0.144      
14 H 0.144      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  0.000 0.000 0.000 0.000
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 7.655 -0.061 0.000
y -0.061 8.089 0.000
z 0.000 0.000 9.496


<r2> (average value of r2) Å2
<r2> 140.277
(<r2>)1/2 11.844