return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for C4H9N (Pyrrolidine)

using model chemistry: B3LYP/LANL2DZ

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes CS 1A'
Energy calculated at B3LYP/LANL2DZ
 hartrees
Energy at 0K-212.547279
Energy at 298.15K-212.558585
Nuclear repulsion energy188.244038
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/LANL2DZ
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 3553 3415 0.64      
2 A' 3148 3026 103.34      
3 A' 3104 2983 10.04      
4 A' 3082 2963 66.20      
5 A' 2943 2829 179.16      
6 A' 1547 1487 1.43      
7 A' 1527 1468 8.88      
8 A' 1398 1344 0.18      
9 A' 1320 1269 3.98      
10 A' 1240 1192 0.68      
11 A' 1223 1176 4.58      
12 A' 1091 1049 1.06      
13 A' 1004 965 3.14      
14 A' 945 908 6.61      
15 A' 901 866 1.35      
16 A' 832 800 31.34      
17 A' 730 702 36.38      
18 A' 543 522 122.42      
19 A' 257 247 4.91      
20 A" 3122 3001 4.01      
21 A" 3094 2974 90.49      
22 A" 3069 2950 25.74      
23 A" 2935 2821 77.89      
24 A" 1533 1474 0.01      
25 A" 1512 1454 2.02      
26 A" 1445 1389 7.73      
27 A" 1338 1287 2.49      
28 A" 1314 1263 27.48      
29 A" 1253 1205 4.31      
30 A" 1204 1157 0.06      
31 A" 1148 1104 14.35      
32 A" 1126 1082 1.09      
33 A" 943 906 1.58      
34 A" 879 845 3.77      
35 A" 646 621 0.88      
36 A" 30 28 0.21      

Unscaled Zero Point Vibrational Energy (zpe) 28490.0 cm-1
Scaled (by 0.9612) Zero Point Vibrational Energy (zpe) 27384.6 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/LANL2DZ
ABC
0.22383 0.22321 0.12637

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/LANL2DZ

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
N1 0.491 -1.127 0.000
H2 0.452 -2.146 0.000
C3 -0.096 -0.467 1.187
C4 -0.096 -0.467 -1.187
C5 -0.096 1.033 0.783
C6 -0.096 1.033 -0.783
H7 -1.134 -0.798 1.395
H8 -1.134 -0.798 -1.395
H9 0.507 -0.664 2.081
H10 0.507 -0.664 -2.081
H11 0.805 1.527 1.161
H12 0.805 1.527 -1.161
H13 -0.965 1.557 1.200
H14 -0.965 1.557 -1.200

Atom - Atom Distances (Å)
  N1 H2 C3 C4 C5 C6 H7 H8 H9 H10 H11 H12 H13 H14
N11.01941.47941.47942.37142.37142.16682.16682.13202.13202.91412.91413.28053.2805
H21.01942.12762.12763.31943.31942.50582.50582.55532.55533.86823.86824.14224.1422
C31.47942.12762.37371.55362.47621.10912.80251.09633.32892.18873.21002.20283.2476
C41.47942.12762.37372.47621.55362.80251.10913.32891.09633.21002.18873.24762.2028
C52.37143.31941.55362.47621.56642.19203.02912.21983.38331.09522.19951.09642.2271
C62.37143.31942.47621.55361.56643.02912.19203.38332.21982.19951.09522.22711.0964
H72.16682.50581.10912.80252.19203.02912.79041.78363.84643.03683.96282.36963.5085
H82.16682.50582.80251.10913.02912.19202.79043.84641.78363.96283.03683.50852.3696
H92.13202.55531.09633.32892.21983.38331.78363.84644.16202.39483.92462.80634.2261
H102.13202.55533.32891.09633.38332.21983.84641.78364.16203.92462.39484.22612.8063
H112.91413.86822.18873.21001.09522.19953.03683.96282.39483.92462.32281.77012.9506
H122.91413.86823.21002.18872.19951.09523.96283.03683.92462.39482.32282.95061.7701
H133.28054.14222.20283.24761.09642.22712.36963.50852.80634.22611.77012.95062.3991
H143.28054.14223.24762.20282.22711.09643.50852.36964.22612.80632.95061.77012.3991

picture of Pyrrolidine state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
N1 C3 C5 102.838 N1 C3 H7 112.888
N1 C3 H9 110.857 N1 C4 C6 102.838
N1 C4 H8 112.888 N1 C4 H10 110.857
H2 N1 C3 115.512 H2 N1 C4 115.512
C3 N1 C4 106.696 C3 C5 C6 105.061
C3 C5 H11 110.243 C3 C5 H13 111.289
C4 C6 C5 105.061 C4 C6 H12 110.243
C4 C6 H14 111.289 C5 C3 H7 109.694
C5 C3 H9 112.651 C5 C6 H12 110.203
C5 C6 H14 112.319 C6 C4 H8 109.694
C6 C4 H10 112.651 C6 C5 H11 110.203
C6 C5 H13 112.319 H7 C3 H9 107.943
H8 C4 H10 107.943 H11 C5 H13 107.741
H12 C6 H14 107.741
Electronic energy levels

Electronic state

Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/LANL2DZ Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 N -0.342      
2 H 0.253      
3 C -0.347      
4 C -0.347      
5 C -0.379      
6 C -0.379      
7 H 0.165      
8 H 0.165      
9 H 0.208      
10 H 0.208      
11 H 0.210      
12 H 0.210      
13 H 0.188      
14 H 0.188      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -1.131 -0.174 0.000 1.144
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -33.892 0.902 0.000
y 0.902 -29.734 0.000
z 0.000 0.000 -30.978
Traceless
 xyz
x -3.536 0.902 0.000
y 0.902 2.701 0.000
z 0.000 0.000 0.835
Polar
3z2-r21.669
x2-y2-4.158
xy0.902
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 5.956 0.154 0.000
y 0.154 7.108 0.000
z 0.000 0.000 7.462


<r2> (average value of r2) Å2
<r2> 111.034
(<r2>)1/2 10.537