return to home page Computational Chemistry Comparison and Benchmark DataBase Release 22 (May 2022) Standard Reference Database 101 National Institute of Standards and Technology
You are here: Calculated > Energy > Optimized > Energy

All results from a given calculation for C4H8O2 (1,3-Dioxane)

using model chemistry: B3LYP/SDD

19 10 17 12 22

States and conformations

State Conformation minimum conformation conformer description state description
1 1 yes CS 1A'
Energy calculated at B3LYP/SDD
 hartrees
Energy at 0K-307.624294
Energy at 298.15K-307.635392
Nuclear repulsion energy259.604829
The energy at 298.15K was derived from the energy at 0K and an integrated heat capacity that used the calculated vibrational frequencies.
Vibrational Frequencies calculated at B3LYP/SDD
Mode Number Symmetry Frequency
(cm-1)
Scaled Frequency
(cm-1)
IR Intensities
(km mol-1)
Raman Act
4/u)
Dep P Dep U
1 A' 3202 3078 24.85      
2 A' 3162 3039 34.41      
3 A' 3130 3009 38.61      
4 A' 3063 2944 33.44      
5 A' 3012 2896 139.07      
6 A' 2976 2861 89.34      
7 A' 1521 1462 9.26      
8 A' 1499 1441 1.17      
9 A' 1490 1433 10.23      
10 A' 1409 1354 7.70      
11 A' 1306 1256 5.86      
12 A' 1193 1147 9.27      
13 A' 1146 1101 97.15      
14 A' 1090 1048 50.08      
15 A' 980 942 44.95      
16 A' 901 866 3.33      
17 A' 812 780 11.85      
18 A' 626 601 6.10      
19 A' 476 458 1.48      
20 A' 402 386 13.96      
21 A' 258 248 4.83      
22 A" 3157 3035 41.82      
23 A" 3005 2889 24.51      
24 A" 1507 1448 5.84      
25 A" 1433 1378 3.83      
26 A" 1388 1335 3.88      
27 A" 1385 1331 0.18      
28 A" 1307 1256 0.07      
29 A" 1249 1201 20.39      
30 A" 1214 1167 2.58      
31 A" 1069 1027 2.82      
32 A" 987 949 97.00      
33 A" 915 879 26.34      
34 A" 843 810 34.02      
35 A" 447 430 10.60      
36 A" 242 233 2.57      

Unscaled Zero Point Vibrational Energy (zpe) 26899.2 cm-1
Scaled (by 0.9613) Zero Point Vibrational Energy (zpe) 25858.2 cm-1
See section III.C.1 List or set vibrational scaling factors to change the scale factors used here.
See section III.C.2 Calculate a vibrational scaling factor for a given set of molecules to determine the least squares best scaling factor.
Rotational Constants (cm-1) from geometry optimized at B3LYP/SDD
ABC
0.15914 0.15465 0.08792

See section I.F.4 to change rotational constant units
Geometric Data calculated at B3LYP/SDD

Point Group is Cs

Cartesians (Å)
Atom x (Å) y (Å) z (Å)
C1 -0.629 -1.258 0.000
O2 0.013 -0.777 1.205
O3 0.013 -0.777 -1.205
C4 0.013 0.693 1.256
C5 0.013 0.693 -1.256
C6 0.698 1.266 0.000
H7 -0.527 -2.342 0.000
H8 -1.690 -0.942 0.000
H9 0.545 0.955 2.174
H10 -1.028 1.053 1.328
H11 0.545 0.955 -2.174
H12 -1.028 1.053 -1.328
H13 1.755 0.974 0.000
H14 0.641 2.363 0.000

Atom - Atom Distances (Å)
  C1 O2 O3 C4 C5 C6 H7 H8 H9 H10 H11 H12 H13 H14
C11.44761.44762.40742.40742.85091.08931.10713.31672.69543.31672.69543.26493.8374
O21.44762.40981.47072.86662.46822.04792.09292.05462.10953.83393.29422.74733.4216
O31.44762.40982.86661.47072.46822.04792.09293.83393.29422.05462.10952.74733.4216
C42.40741.47072.86662.51251.54103.32892.67431.09241.10463.48102.80982.16542.1824
C52.40742.86661.47072.51251.54103.32892.67433.48102.80981.09241.10462.16542.1824
C62.85092.46822.46821.54101.54103.81003.25192.20132.18842.20132.18841.09641.0993
H71.08932.04792.04793.32893.32893.81001.82054.09233.68044.09233.68044.02484.8484
H81.10712.09292.09292.67432.67433.25191.82053.64952.48653.64952.48653.94134.0445
H93.31672.05463.83391.09243.48102.20134.09233.64951.78874.34793.84062.48802.5920
H102.69542.10953.29421.10462.80982.18843.68042.48651.78873.84062.65653.08472.5034
H113.31673.83392.05463.48101.09242.20134.09233.64954.34793.84061.78872.48802.5920
H122.69543.29422.10952.80981.10462.18843.68042.48653.84062.65651.78873.08472.5034
H133.26492.74732.74732.16542.16541.09644.02483.94132.48803.08472.48803.08471.7810
H143.83743.42163.42162.18242.18241.09934.84844.04452.59202.50342.59202.50341.7810

picture of 1,3-Dioxane state 1 conformation 1
More geometry information
Calculated Bond Angles
atom1 atom2 atom3 angle atom1 atom2 atom3 angle
C1 O2 C4 111.165 C1 O3 C5 111.165
O2 C1 O3 112.684 O2 C1 H7 106.808
O2 C1 H8 109.293 O2 C4 C6 110.057
O2 C4 H9 105.618 O2 C4 H10 109.172
O3 C1 H7 106.808 O3 C1 H8 109.293
O3 C5 C6 110.057 O3 C5 H11 105.618
O3 C5 H12 109.172 C4 C6 C5 109.216
C4 C6 H13 109.217 C4 C6 H14 110.375
C5 C6 H13 109.217 C5 C6 H14 110.375
C6 C4 H9 112.301 C6 C4 H10 110.533
C6 C5 H11 112.301 C6 C5 H12 110.533
H7 C1 H8 111.957 H9 C4 H10 109.010
H11 C5 H12 109.010 H13 C6 H14 108.416
Electronic energy levels
Charges, Dipole, Quadrupole and Polarizability
Charges from optimized geometry at B3LYP/SDD Charges (e)
Number Element Mulliken CHELPG AIM ESP
1 C -0.140      
2 O -0.283      
3 O -0.283      
4 C -0.260      
5 C -0.260      
6 C -0.336      
7 H 0.224      
8 H 0.165      
9 H 0.221      
10 H 0.167      
11 H 0.221      
12 H 0.167      
13 H 0.216      
14 H 0.180      


Electric dipole moments
Electric dipole components in Debye
(What's a Debye? See section VII.A.3)
  x y z Total
  -1.112 2.670 0.000 2.892
CHELPG        
AIM        
ESP        


Electric Quadrupole moment
Quadrupole components in D Å
Primitive
 xyz
x -35.253 2.168 0.000
y 2.168 -34.586 0.000
z 0.000 0.000 -40.211
Traceless
 xyz
x 2.145 2.168 0.000
y 2.168 3.147 0.000
z 0.000 0.000 -5.292
Polar
3z2-r2-10.583
x2-y2-0.668
xy2.168
xz0.000
yz0.000


Polarizabilities
Components of the polarizability tensor.
Units are Å3 (Angstrom cubed)
Change units.
  x y z
x 6.037 0.490 0.000
y 0.490 7.316 0.000
z 0.000 0.000 6.777


<r2> (average value of r2) Å2
<r2> 144.162
(<r2>)1/2 12.007